August 1999

CADD/GIS Technology Center

Environmental Restoration Program
Information Management System(ERPIMS)/
Spatial Data Standards(SDS)
Translator Concept Model
Delivery Order No. 23
Contract No. DACW39-96-D-0017

By Barry Schimpf

Upper 90 Systems, Inc

On behalf of Michael Baker Corporation

Project – FCAD2 Program - Integration of Existing Databases

Prepared for
U.S. Army Engineer Waterways Experiment Station

3909 Halls Ferry Road, Vicksburg, MS 39180-6199

August 1999

Environmental Restoration Program
Information Management System(ERPIMS)/
Spatial Data Standards(SDS)
Translator Concept Model
Delivery Order No. 23
Contract No. DACW39-96-D-0017

by
Barry Schimpf

Upper 90 Systems, Inc

On behalf of
Michael Baker Corporation
420 Rouser Road
Airport Office Park
Coraopolis, PA 15108
Project – FCAD2 Program - Integration of Existing Databases
Prepared for
U.S. Army Engineer Waterways Experiment Station

3909 Halls Ferry Road, Vicksburg, MS 39180-6199

Contents

11
Overview/Background

Spatial Data Standards (SDS) Development
1
Environmental Restoration Program Information Management System (ERPIMS)
1
Purpose
1
2
Concepts/Issues
3
Data Types
3
Dates and Times
4
Constraints
4
List Domains
5
Relationships
5
3
The Approach
6
Selecting a Platform
6
Beginning the Process
7
Pre-Translation Analysis
7
Moving Data
8
4
Summary
10
The Prototype
10
Appendix A – ODBC Data Types
A1
Appendix B – SDS/FMS Generator
B1

[image: image1.png]Microsoft Access 97

Destination Database

m={

Oracle - SQL Server
Informix - Access

Source Database

Transformation
Algorithms

Oracle - SQL Server
Informix - Access

1 Overview/Background

Spatial Data Standards (SDS) Development

The CADD/GIS Technology Center is responsible for maintenance and distribution of the Spatial Data Standards (GIS) (SDS). In August of 1995, the CADD/GIS Technology Center published Release 1.400 of the TSSDS in electronic format. Release 1.600 of the TSSDS was published in November 1996. Release 1.700 of the TSSDS was published and distributed at the August 1997 Tri-Service CADD/GIS/FM Symposium in St. Louis, MO. Release 1.800 of the TSSDS, the first release of the TSSDS/TSFMS, was published in February 1999.

Beginning at the end of 1999, the TSSDS/TSFMS will be known as the Spatial Data Standards/Facility Management Standards (SDS/FMS). This change will coincide with additional integration of other associated Department of Defense and Federal Agency standards into the SDS/FMS. Since the SDS/FMS is a "physical" implementation, it is possible to consider "automated" translation of existing department/ agency data to, and from, the SDS/FMS schema. This project begins to address the issues which surround these translations and what software aids may be exploited in today's technology to assist with these translations.
Environmental Restoration Program Information Management System (ERPIMS)

The Environmental Restoration Program Information Management System (ERPIMS) is used extensively by the Air Force to organize and retain electronic information regarding environmental restorations. It is fundamentally Oracle® Relational Database Management System (RDBMS) based. Development and continuing configuration management of ERPIMS is performed at the Air Force Center for Environmental Excellence (AFCEE), located at Brooks AFB, Texas. Many of the ERPIMS data structures and attributes were incorporated into Release 1.800 of the TSSDS/TSFMS. Additional attributes are being included in the development of Release 1.900 of the SDS/FMS, currently scheduled for distribution at the beginning of 2000. While the ERPIMS consists of a robust physical relational model, only several tables will be used for the prototype effort.

Purpose

The purpose of this document is to [1] outline the interests of the CADD/GIS Technology Center in converting data to, and from, their spatial data standards, [2] discuss the conceptual and technological issues surrounding these conversions, [3] outline an approach to adequately address these issues, and [4] specify a software framework to implement the approach.

The CADD/GIS Technology Center is tasked with investigating the needs of their user community with respect to organizing spatial data within the limits of current technology. In general, these include "attaching" a relational database to some sort of spatial topology representation technique to permit analysis and display of data which more efficiently conveys information to users. These relational data structures use conventional RDBMS systems to organize information into table and attributes. While the general implementation of various RDBMS systems is similar, specific organizations vary from vendor to vendor. For the Spatial Data Standards/Facility Management Standards (SDS/FMS) the current vendor set includes:

1. Oracle - specifically version Oracle 7.2 and subsequent,

2. Informix - various versions,

3. Microsoft - both SQL Server version 7.0 and subsequent and ACCESS 97 and subsequent

In addition, the CADD/GIS Technology Center user community has already adopted a series of both spatial and non-spatial data standards which either have been incorporated into the SDS/FMS or are likely to be over the course of the next several releases. This situation necessitates at least a preliminary investigation of an effective approach to moving this data from one data standard, and potentially one RDBMS, to another.

Defining an effective approach to these translations means developing a thorough understanding of the issues which confront this standard to standard and/or RDBMS to RDBMS translation. Since many electronic data storage systems organize and interpret the "one's and zero's" differently, it is necessary to understand and compensate for these differences. This document will further explore these issues and begin to develop a baseline which will guide the development of automated tools to assist with these migrations.

2 Concepts/Issues

The investigation of the translation/migration of one data structure to another must begin with an examination of the concepts of data storage and the issues which surround moving data from one database to another. The investigation is centered on both the nature of the data structure and the nature of the implementing software. As the technology of data storage and organization improves, it is less and less likely that these two areas of investigation can be separated. Therefore, this document assumes [1] that the source database conforms to a "table" structure where individual attributes are stored in rows (or records) within these tables and [2] that the RDBMS conforms to the current Open Data Base Connectivity (ODBC) standards. Making these assumptions is essential to overcoming the local conventions used by the RDBMS software and relies on the software vendor to make the necessary transformation.

Data Types

Since the early days of electronic devices, data has been stored as a series of "1's" and "0's". Even the traditional "punch cards" or "paper tape" of times past used the "1", the hole is punched, or "0", the hole is not punched. So the data types we speak of today do not refer to the way data is stored. They refer, instead, to the two things which are of importance to the systems and programs of the electronic storage industry. The first is "How many 'bytes' are required to store the information?" and the second is "How will the patterns of '1's' and '0's' be interpreted.?" In this regard, a byte refers to an ordered array of 8 individual "1's" and "0's", known as "bits".

Without getting into a detailed discussion of the differences between ASCII and UNICODE, or the subtleties of CHAR versus VARCHAR, the important thing to understand is that, when moving data from one location to another, the data type is critical. Since it controls both the amount of storage necessary (the number of bytes) and the interpretation of that storage, failure to consider data type conversions is likely to result in unrecognizable data at the destination. In addition, since vendors use their own conventions for the determination of data types (particularly for RDBMS systems), it is easier to use the ODBC data typing conventions to accommodate the differences. In this way, the vendor has already determined the precise transformation between their own data typing conventions and the ODBC standard. Appendix A provides an outline of the current ODBC data types with definitions.

The SDS/FMS uses its own "universal" data types. These are designed to simplify the combinations available and yet provide sufficient capability to handle the vast majority of data storage needs. It is, in most cases, the responsibility of the Database Administrator (DBA) to ensure proper transformation between the SDS/FMS data types and the user's database. The SDS/FMS Generator uses it's own transformations for the various RDBMS, and those transformations are summarized in Appendix B.

What is important is that the translation NOT actually create tables, thereby ensuring that data types are user controlled. Rather, the translation process should read the data types of the source database and the data types of the destination database, and make the appropriate translation. The overriding principle in this process should be to not only ensure the maximum amount of information transfer, but to document those instances where data may have been compromised or lost. This would not only involve reductions in the sizes of character strings, but loss of precision in numeric values.

Using the ODBC data type transformations ensures the best possible translations of data types. These are best determined using the standard ODBC "Remote Data Object", which determines the ODBC data type of the attribute which the vendor has determined best fits their own. This not only makes use of the vendors own experts for the translations, but ensures that, should the vendor change their data type conventions, that the new ODBC drivers would continue to reflect these modifications. Therefore, data type issues are best handled using the common ODBC data type structures. This permits the most accurate data translations with the greatest quantity of information populating the database.

Dates and Times

Within the SDS/FMS all dates are expressed as INTEGERS (ODBC SQL_INTEGER) in the form YYYYMMDD. This structure not only ensures consistency and "readability", but allows for accurate date comparisons of those dates that "precede" or "follow" other dates. It has the added advantage of being compliant with all Y2K (Year 2000 Compliance) concerns. If we sort a list of SDS/FMS dates in numerical order, the oldest dates will appear at the top of the list. This can be particularly useful in data manipulation. Other data systems use a variety of date field possibilities, including an electronic TIMESTAMP or even a character field. In performing the translation, it is important to consider the date translations to ensure accuracy of date field information at the other end. There are a number of DATE functions available to perform these manipulations.

In a similar manner, the SDS/FMS specifies times as INTEGERS (ODBC SQL_INTEGER) in the form HHMMSS. Again, this structure is both readable as well as easily sorted, with earlier times appearing at the top of the list. Time conversions can be tricky, particularly for those systems which combine dates and times into TIMESTAMPs. In addition, the differences between the 24 Hour clock and the use of AM/PM makes extra caution advisable. Extreme care must be taken to ensure that the time reflected in the conversion are an accurate representation of the original information stored in the field.

Constraints

The other significant characteristic of relational databases which must be considered in the translation are constraints. Attribute Constraints, simply stated, limit the values which may be included in the set of permissible values. Constraints may be as simple as requiring data (NO NULLS) or as complex as mandatory Foreign Key/Primary Key references. In between are specific limits such as domains. The translation must take into account as many constraints as possible, to ensure that the data, and the limits to the data, are properly reflected.

Since the SDS/FMS already imposes a number of constraints itself, the challenge is to integrate the source database constraints into the SDS/FMS, without compromising the SDS/FMS constraints. These include Primary Keys, Range Domains, List Domains, and Foreign Keys. Within the SDS/FMS, NO NULLs are predefined only for the graphic linking attributes, so they are not normally an issue for the translation process. At the same time, Foreign Keys/Primary Key linkages are a function of the nature of the relationships within the database and are dealt with in the next section. Range domains are primarily a constraint on data entry so they normally are not involved in the translation process. However, it is possible to compare the translated values with the documented Range Domains as a part of the migration, simply documenting any values which lie outside of the specified range. This leaves the fundamental constraint to be considered during the translation process as List Domains, or the discrete values which are permissible within the field.

List Domains

The SDS/FMS specifies most List Domains in considerable detail. If the attribute translation is from a List Domain constrained field to a non-List Domain field, the translation constraints are abandoned. If the field is from a source List Domain field to a destination List Domain field, it is possible to assign a "domain conversion" algorithm based on the user's understanding of the definitions/meanings of the individual values. It is possible that the two constraining domains are not "one for one", requiring greater involvement from the user in accomplishing the translation. In some cases, it might be necessary NOT to perform the domain conversion as a part of the translation, but merely to highlight the need for later review. An even greater problem occurs when a "free form" field is to be converted to a domain field. In this case, it is necessary to determine the list of unique values in the field, and then determine the conversions required.

In cases where the source schema (database structure), has been considered in the preparation of the SDS/FMS schema, these domain conversions should already have been documented. If so, these may be electronically read and applied. However, if no preliminary comparisons have been performed, it may be necessary to determine the complete set of conversions either in advance of, or in conjunction with, the translation. To perform these conversions in conjunction with the translation, greater involvement by knowledgeable individuals will be required.

Relationships

The single most important issue in the conversion of information in a relational environment is the nature of the relationships themselves. In fact, it is quite possible that differences between the relationship organization of the two databases will be such as to prevent any reasonable data translation. If we think of data tables are referring to the collection of characteristics about an object, the relationships refer to the real relationships between objects. What makes these relationships particularly meaningful is the concept of "one to many" relationships.

Let us take the case of samples being taken from a location. If we assume that in both databases sample and location are tables. If the source database allows for only a single sample at a location and the destination allows for multiple samples, the transformation is unaffected by the relationships. The destination database is capable of handling the data. If, on the other hand, the source structures permit multiples and the destination only permits a single sample, information will be lost. Data regarding those other samples has no corresponding table location in the destination database. Therefore, it is important that these structures be examined in determining the optimal translation.

By considering these limitations up front, it is possible to ensure that the relationships are sufficient to store all of the applicable data. In the case of the ERPIMS to SDS/FMS translation, these relationships will be examined to ensure that there are no "cardinality" limitations which might otherwise compromise the translation of the data. The complexity of this examination is a function of the number of tables involved and the number of relationships which exist between the tables. This analysis requires individuals who are not only familiar with the data involved but understand the implications of complex relational structures. The good news is that this analysis is not a function of the contents of the database, but rather the structure of the database. Consequently, once the analysis has been performed, it need not be repeated solely based on content changes to the database. However, it must be reevaluated should either the source or the destination schemas change.

3 The Approach

When considering an approach to addressing the issues raised in the previous section, four fundamental capabilities are required in a platform. These are:

A. Complete Compliance with ODBC Standards

B. Complete compatibility with SQL-92

C. Flexibility of use

D. Easily manipulated by Data Access Objects/Remote Data Objects

Selecting a Platform

All of the RDBMS platforms included in section 1 of this document more or less meet the requirements expressed above. Looking at the possibilities, the recommended platform is Microsoft Access 97. This selection is made for three significant reasons.

1 - It's overall cost with respect to the other solutions is considerably reduced. While an activity may already own Oracle, Informix, or SQL Server, it is unlikely that they would want to make the additional investment if they did not. Each of these systems, in even minimal configuration, is more than twice the cost of Microsoft Access 97, and Access is generally available in governmental offices either as a part of Microsoft Office Professional, or as a standalone add-on. Thus, in nearly all cases, Microsoft Access is the lowest cost solution.

2 - An easily understandable Graphic User Interface (GUI) front end. The organization of Access Tables and a user friendly "query builder" make it a logical choice. In many cases, government users will require little or no additional training to implement translations using Access.

3 - Compatibility with the "Jet" Database Engine which is easily incorporated into Visual Basic or other application producing visual application developers. While this approach may compromise some speed as opposed to other techniques, infrequent or "one time" conversions probably don't require anything approaching "real time".

The general approach then is to use Access as the linking vehicle for conversion of the data, handling the action queries which do the transformation within Access, while linking to the ODBC compliant source and destination databases. This approach is graphically depicted at right.

Beginning the Process

The first step in the transformation is to determine precisely what must be translated. While this may seem obvious on the surface, it is always advisable to determine the contents of what is being translated. Under normal circumstances, this begins with determining the set or collection of tables which constitute the source database. This will generally be a subset of the entire database. Once this collection has been defined, these tables should be examined to determine what is included within these tables.

One of the postulates of data migration is "never worry about things that aren't there". Many relational databases have attributes which are, simply stated, empty; e.g. no data has been entered and the fields are NULL. Or it is even possible that the tables themselves are empty. It saves a lot of time, and later effort, to make this determination now rather than waiting and attempting to accommodate all transformations even though they are NULL.

While the process of determining the record counts and number of NOT NULL records is tedious manually, it is relatively simple using code since the structure of the SQL Statements is uniform throughout. To determine the records in a table use:

SELECT COUNT(*) FROM [TABLE NAME];

This query is performed quickly and returns the number of records in "TABLE NAME". If the result is 0, the table is empty and can be ignored; e.g. no data is present to convert.

In a similar manner, individual fields can be examined by using another SQL Statement. To determine the number of records in an attribute within a table containing data, use:

SELECT COUNT(*) FROM [TABLE NAME] WHERE [ATTRIBUTE NAME] IS NOT NULL;

Even if a table has records, obtaining zero as a result to the above query means there is no data contained within this attribute in any of the table's records. Thus, no conversion is required and the attribute may be ignored.

Consequently, by reading the tables and attributes in the source database, and running the queries indicated above, it is possible to determine the precise set of tables and attributes which must be translated. In some cases, performing this analysis up front will significantly reduce the time and complexity of the translation, particularly if no conversion analysis has been performed in advance.

NOTE: It is possible that data contained in the source table may be required to be split into more than one table based on some other value. This may be particularly true in certain spatial data conversions where the categorization of "features" in one data set may be different from the "features" in another. If this "splitting" of tables is to be performed, it means that some mechanism for conditionally selecting the records to migrate must be included in the approach. Standard SQL handles this situation quite well.

Pre-Translation Analysis

Moving data from one table to another is best performed using an "INSERT" action query. Keeping in mind that the best results from a data type perspective are achieved when the destination table has already been built, the INSERT query permits selection, conversion, and insertion of data simultaneously. However, there are several important steps that are required before any data is actually moved. This involves an examination of the issues outlined in section 2 of this document.

One of the first important steps is to determine whether the insertion of new records will result in Primary Key problems. Keeping in mind that the fundamental purpose of the Primary Key is to uniquely identify each and every record in the table, it is critical that [1] destination Primary Keys are NOT NULL, and [2] that destination Primary Keys are UNIQUE. This means that whichever field is to be moved to the Primary Key field in the destination, that field must [1] contain data, [2] that is must be unique within the source table, and [3] that the source values not duplicate any values contained in the destination table within that field.

Determining that these conditions are met is considerably easier than correcting the problem if they are not. Again, it is advisable to perform the queries and display the results in advance of any translation rather than interrupting the migration in process. The Primary Key criteria may not be circumvented. Loss of Primary Key references jeopardizes JOINS and hinders the ability of users (or applications) to accurately locate a record. Therefore, this issue must be addressed in advance of any migration.

The second critical step preparatory to the translation is the review of the specific data types. This is necessary not only to determine whether the destination attribute will accurately accept the data contained in the source, but what conversion algorithms are required to perform the move. As an example, the source attribute contains character string data in SQL_CHAR format and the destination data type is SQL_INTEGER, then the data must be trimmed of trailing spaces and then converted to an integer. There are Microsoft Access functions to perform all of the required conversions.

At this step of the analysis, before any data has been moved, it is possible to determine whether data is likely to be compromised or lost. Conditions which might cause this situation include character fields with reduced character length, or real numbers being converted to integers. The advantage of documenting these deficiencies up front is that action may be taken in advance of the translation to analyze the impact of the data loss. It may be possible to compensate for these conditions. It may even be permissible to just lose the data.

Moving Data

Once the specific data to be migrated has been determined and the conversions/changes in that data have been identified, it is time to actually move the data. Within Microsoft Access 97, this is performed using the INSERT query. This means that both tables (source and destination) must be "attached" to the "Translation" Access Database. This can be done manually or through the use of code. To see the way this is accomplished in Access 97, perform the following steps:

1 - Create an Empty Database

2 - From the Menu - select [File|Get External Data|Link Tables]

3 - At the Link Dialog - select "Files of Type" - ODBC Databases() [Usually at the bottom]

4 - Select the ODBC Data Source, providing Password Information if Required

5 - Select the Table or Tables from the List (The Table Names may be preceded by the Owner)

6 - Select the Unique Field as a Primary Key if requested.

At this point, the Table will be linked to Microsoft Access 97 and may be manipulated just like any other table; e.g. it may be used in queries or viewed. NOTE: Since Access does not control the structure of the table, it will not be possible to alter the structure of the table. This same restriction is true of any "linked" table in Microsoft Access.

In this same way, it is possible to "link" all of the required source tables and all of the required destination tables into the Translation Database. This can be done either manually one at a time, or through the use of the Microsoft Data Access Objects (DAO) within Visual Basic, Access Basic, or even C. These table can then be included directly into the INSERT queries for the destination database. In general, the format of these INSERT queries (Access calls them APPEND queries) for SQL appears as:

INSERT INTO [DESTINATION TABLE NAME]

([DESTINTATION ATTRIBUTE NAME ONE],

[DESTINATION ATTRIBUTE NAME TWO] …)

SELECT [SOURCE ATTRIBUTE NAME ONE],

[SOURCE ATTRIBUTE NAME TWO] …

FROM [SOURCE TABLE NAME];

Any simple transformations can be performed simultaneously with the query. Microsoft offers great flexibility to perform transformation functions as a part of these queries. If the required conversions are very complex, then the Microsoft Access Database itself may serve to store a working copy of the data. In these cases, a copy of the data table, modified to reflect the optimum format, is created inside of Access. Again, this can be accomplished using the DAO code. This copy is then modified as required and then "APPENDED" to the destination table using the same format of INSERT SQL query.

Using this approach, nearly any conversion may be accomplished. At the same time, it is possible to count records to ensure that the destination database has been properly populated. It is also possible to use a variety of UPDATE queries to modify List Domain Values to reflect any domain value changes required as a part of the migration.

The approach may be validated manually, individually connecting or linking tables, and then creating and executing the queries. This technique, while valid, is tedious and time consuming. It is possible, however, to create code which will perform many of the mundane tasks such as documenting the source and destination tables, examining the data type conversions required, connecting or linking the required tables, and creating the executing the queries. Thus, with a little bit of "up front" work in analysis and determining the actions to take place, it may even be possible to perform the migration without user intervention.

4 Summary

Given that the approach is feasible and has been demonstrated in a test mode, the next step is to select a prototype target conversion/translation, develop some prototype code to assist with tasks which can be easily automated, analyze the requirements of the prototype conversion, and actually demonstrate the ability to automate a conversion from the source database to the target database.

The Prototype

The Prototype selected for the project is ERPIMS. As has already been indicated, ERPIMS has been examined for preliminary inclusion into Release 1.800 of the TSSDS/TSFMS and is being revised based on the latest documentation for completion in Release 1.900 of the SDS/FMS. The specific tables within the ERPIMS for conversion are currently being selected. Once that has been completed, an analysis will be performed to determine the adequacy of the comparable SDS/FMS data structure to completely meet the required data storage needs.

At the same time, prototype code will be developed in Visual Basic to begin to identify the ability of code to perform the tasks outlined in the previous section. The culmination of this effort will be a demonstration to convert real ERPIMS data into the comparable SDS/FMS structures, considering and compensating for all of the issues which surround this conversion.

It is anticipated that this demonstration may take place as soon as late September or early October of this year, with a more robust software Translation tool available before the end of the year. Work has already begun to identify the "classes" of translations necessary to perform the demonstration. Once the preliminary target has been identified, it should only be a matter of weeks until the complete set of translation algorithms have been defined.

Appendix A – ODBC Data Types

Attached is a table of the currently specified ODBC Data Types:

ODBC Type Identifier [1]
Typical SQL Data Type
Typical type description

SQL_CHAR
CHAR(n)
Character string of fixed string length n.

SQL_VARCHAR
VARCHAR(n)
Variable-length character string with a maximum string length n.

SQL_LONGVARCHAR
LONG VARCHAR
Variable length character data. Maximum length is data source–dependent. [9]

SQL_DECIMAL
DECIMAL(p,s)
Signed, exact, numeric value with a precision of at least p and scale s. (The maximum precision is driver-defined.)

(1 <= p <= 15; s <= p). [4]

SQL_NUMERIC
NUMERIC(p,s)
Signed, exact, numeric value with a precision p and scale s

(1 <= p <= 15; s <= p). [4]

SQL_SMALLINT
SMALLINT
Exact numeric value with precision 5 and scale 0 (signed: –32,768 <= n <= 32,767, unsigned:

0<= n <= 65,535) [3] .

SQL_INTEGER
INTEGER
Exact numeric value with precision 10 and scale 0 (signed: –2[31] <= n <= 2[31] – 1, unsigned: 0 <= n <= 2[32] – 1) [3] .

SQL_REAL
REAL
Signed, approximate, numeric value with a binary precision 24 (zero or absolute value 10[–38] to 10[38]).

SQL_FLOAT
FLOAT(p)
Signed, approximate, numeric value with a binary precision of at least p. (The maximum precision is driver-defined.) [5]

SQL_DOUBLE
DOUBLE

PRECISION
Signed, approximate, numeric value with a binary precision 53 (zero or absolute value 10[–308] to 10[308]).

SQL_BIT
BIT
Single bit binary data. [8]

SQL_TINYINT
TINYINT
Exact numeric value with precision 3 and scale 0 (signed: –128 <= n <= 127, unsigned: 0<= n <= 255) [3] .

SQL_BIGINT
BIGINT
Exact numeric value with precision 19 (if signed) or 20 (if unsigned) and scale 0 (signed: –2[63] <= n <= 2[63] – 1, unsigned: 0 <= n <= 2[64] – 1) [3], [9].

SQL_BINARY
BINARY(n)
Binary data of fixed length n. [9]

SQL_VARBINARY
VARBINARY(n)
Variable length binary data of maximum length n. The maximum is set by the user. [9]

SQL_LONGVARBINARY
LONG VARBINARY
Variable length binary data. Maximum length is data source–dependent. [9]

SQL_TYPE_DATE [6]
DATE
Year, month, and day fields, conforming to the rules of the Gregorian calendar (see “Constraints of the Gregorian Calendar” later in this appendix).

SQL_TYPE_TIME [6]
TIME(p)
Hour, minute, and second fields, with valid values for hours of 00 to 23, valid values for minutes of 00 to 59, and valid values for seconds of 00 to 61. Precision p indicates the seconds precision.

SQL_TYPE_TIMESTAMP [6]
TIMESTAMP(p)
Year, month, day, hour, minute, and second fields, with valid values as defined for the DATE and TIME data types.

SQL_INTERVAL_

MONTH [7]
INTERVAL MONTH(p)
Number of months between two dates; p is the interval leading precision.

SQL_INTERVAL_YEAR [7]
INTERVAL YEAR(p)
Number of years between two dates; p is the interval leading precision.

SQL_INTERVAL_YEAR_

TO_MONTH [7]
INTERVAL YEAR(p) TO MONTH
Number of years and months between two dates; p is the interval leading precision.

SQL_INTERVAL_DAY [7]
INTERVAL DAY(p)
Number of days between two dates; p is the interval leading precision.

SQL_INTERVAL_HOUR [7]
INTERVAL HOUR(p)
Number of hours between two date/times; p is the interval leading precision.

SQL_INTERVAL_

MINUTE [7]
INTERVAL MINUTE(p)
Number of minutes between two date/times; p is the interval leading precision.

SQL_INTERVAL_

SECOND [7]
INTERVAL SECOND(p,q)
Number of seconds between two date/times; p is the interval leading precision and q is the interval seconds precision.

SQL_INTERVAL_DAY_

TO_HOUR [7]
INTERVAL DAY(p) TO HOUR
Number of days/hours between two date/times; p is the interval leading precision.

SQL_INTERVAL_DAY_

TO_MINUTE [7]
INTERVAL DAY(p) TO MINUTE
Number of days/hours/minutes between two date/times; p is the interval leading precision.

SQL_INTERVAL_DAY_

TO_SECOND [7]
INTERVAL DAY(p) TO SECOND(q)
Number of days/hours/minutes/seconds between two date/times; p is the interval leading precision and q is the interval seconds precision.

SQL_INTERVAL_HOUR_

TO_MINUTE [7]
INTERVAL HOUR(p) TO MINUTE
Number of hours/minutes between two date/times; p is the interval leading precision.

SQL_INTERVAL_HOUR_

TO_SECOND [7]
INTERVAL HOUR(p) TO SECOND(q)
Number of hours/minutes/seconds between two date/times; p is the interval leading precision and q is the interval seconds precision.

SQL_INTERVAL_

MINUTE_TO_SECOND [7]
INTERVAL MINUTE(p) TO SECOND(q)
Number of minutes/seconds between two date/times; p is the interval leading precision and q is the interval seconds precision.

[1]
This is the value returned in the DATA_TYPE column by a call to SQLGetTypeInfo.

[2]
This is the value returned in the NAME and CREATE PARAMS column by a call to SQLGetTypeInfo. The NAME column returns the designation; for example, CHAR, while the CREATE PARAMS column returns a comma-separated list of creation parameters such as precision, scale, and length.

[3]
An application uses SQLGetTypeInfo or SQLColAttribute to determine if a particular data type or a particular column in a result set is unsigned.

[4]
SQL_DECIMAL and SQL_NUMERIC data types differ only in their precision. The precision of a DECIMAL(p,s) is an implementation-defined decimal precision that is no less than p, while the precision of a NUMERIC(p,s) is exactly equal to p.

[5]
Depending on the implementation, the precision of SQL_FLOAT can be either 24 or 53: if it is 24, the SQL_FLOAT data type is the same as SQL_REAL, if it is 53, the SQL_FLOAT data type is the same as SQL_DOUBLE.

[6]
In ODBC 3.0, the SQL date, time, and timestamp data types are SQL_TYPE_DATE, SQL_TYPE_TIME, and SQL_TYPE_TIMESTAMP, respectively; in ODBC 2.x, the data types are SQL_DATE, SQL_TIME, and SQL_TIMESTAMP.

[7]
For more information on the interval SQL data types, see the “Interval Data Types” section later in this appendix.

[8]
The SQL_BIT data type has different characteristics than the BIT type in SQL-92.

[9]
This data type has no corresponding data type in SQL-92.

Appendix B – SDS/FMS Generator

The following is a list of SDS/FMS Generator transformations made during the SQL Generation process. These transformations convert the SDS/FMS "Universal" data types to the individual RDBMS data types.

RIS Conversions

SDS/FMS Data Type
RIS Data Type

C - Character
VARCHAR

R - Real
REAL

I - Integer
INTEGER

S - Short Integer
SMALLINT

D - Double
DOUBLE

Informix Conversions

SDS/FMS Data Type
Informix Data Type

C - Character
VARCHAR

R - Real
SMALLFLOAT

I - Integer
INTEGER

S - Short Integer
SMALLINT

D - Double
FLOAT

Oracle Conversions

SDS/FMS Data Type
Oracle Data Type

C - Character
VARCHAR2

R - Real
REAL

I - Integer
NUMBER (10,0)

S - Short Integer
NUMBER (5,0)

D - Double
NUMBER

SQL Server Conversions

SDS/FMS Data Type
SQL Server Data Type

C - Character
VARCHAR

R - Real
FLOAT

I - Integer
INTEGER

S - Short Integer
SMALLINT

D - Double
REAL

Access Conversions

SDS/FMS Data Type
Access Data Type

C - Character
Text

R - Real
Number (Single)

I - Integer
Number (Long Integer)

S - Short Integer
Number (Short Integer)

D - Double
Number (Double)

Figure � SEQ Figure * ARABIC �1�

